This article was downloaded by: On: *29 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Supramolecular Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713649759

Studies of Silicon Podand Solvents

Bogusława łęska^a; Błażej Gierczyk^a; Krystian Eitner^a; Volodimir I. Rybachenko^b; Grzegorz Schroeder^a ^a Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland ^b National Academy of Sciences, Institute of Physical Organic and Coal Chemistry, Donetsk, Ukraine

To cite this Article łęska, Bogusława , Gierczyk, Błażej , Eitner, Krystian , Rybachenko, Volodimir I. and Schroeder, Grzegorz(2004) 'Studies of Silicon Podand Solvents', Supramolecular Chemistry, 16: 5, 303 — 310 **To link to this Article: DOI:** 10.1080/10610270410001687547 **URL:** http://dx.doi.org/10.1080/10610270410001687547

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Studies of Silicon Podand Solvents

BOGUSŁAWA ŁĘSKA^{a,*}, BŁAŻEJ GIERCZYK^a, KRYSTIAN EITNER^a, VOLODIMIR I. RYBACHENKO^b and GRZEGORZ SCHROEDER^a

^aFaculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland; ^bInstitute of Physical Organic and Coal Chemistry, National Academy of Sciences, R. Luxemburg 70, 340114 Donetsk, Ukraine

Received (in Southampton, UK) 22 January 2004; Accepted 25 February 2004

Three types of silicon podands, $Me_2Si(OR)_2$, $EtSi(OR)_3$ and PhSi(OR)₃, where R is a polyoxaethylene chain with different numbers of oxygen atoms (two, three or four), were obtained and studied by ¹H, ¹³C and ²⁹Si NMR methods. NMR spectra of ¹H, ⁷Li, ¹³C, ²³Na and ²⁹Si nuclei were also used for the study of lithium, sodium and rubidium complexes with the silicon podands. Theoretical calculations were performed using the PM3 hamiltonian. The heats of reactions between the compounds obtained and SbCl₅ were determined.

Keywords: Podand solvent; NMR method; Heat of reaction; Theoretical calculation

INTRODUCTION

Various inorganic esters of ethylene glycol have been prepared as described previously [1]. In previous papers [2–4] we have also demonstrated that ligands including poly(oxaalkyl) chains formed proton or cation channels in which the cations showed a high cation polarizability, as a result of the so-called Zundel polarizability [5].

In the past few years we have been interested in di- and tripodands, characterized by the diverse central atom, such as B, P, S or Si. NMR is known to be a very useful method for the investigation of supramolecular complexes with metal ions in solutions. We studied the ligands and their complexes with various metal cations, and neutral molecules (SbCl₅), by using NMR, FTIR and UV spectroscopy, and calorimetric and kinetic methods. Some of the new podands we used as solvents in organic reactions (proton or acyl transfer) were studied by kinetic methods [6–13].

Results concerning two silicon podand solvents, phenyl-tris(1,4-dioxapentyl)silane (PhSi23) and

ethyl-tris(1,4-dioxapentyl)silane (EtSi23), were published recently [14,15]. These compounds and their complexes were studied by FTIR, multinuclear NMR, electronic and semi-empirical methods. The results were very promising and led us to continue our studies of new silicon podand solvents.

EXPERIMENTAL

General Method of Synthesis of Silicon Podands

Three types of silicon podands were obtained by the following reaction:

$$(R)_m - \operatorname{SiCl}_{4-m} + (4-m)\operatorname{CH}_3(\operatorname{OCH}_2\operatorname{CH}_2)_n\operatorname{OH}]$$

$$\rightarrow (R)_m - \operatorname{Si}[(\operatorname{OCH}_2\operatorname{CH}_2)_n\operatorname{OCH}_3]_{4-m} + (4-m)\operatorname{HCl}$$

where $R = CH_3$, C_2H_5 , Ph; m, n = 1 - 3.

Anhydrous polyethylene glycol was cooled to about 0°C and chlorosilane added dropwise very slowly with continuous stirring. The mixture was then heated to boiling and kept at this temperature for about 5 h (until emission of gaseous HCl had ceased); the product was distilled under pressure (10 mmHg). The ratio between the glycols and chlorosilanes used in the reaction depends on the type of podand, but in every case it had to be a small molar excess of glycol.

NMR Measurements

The NMR spectra were recorded in CD_3CN on a Varian Gemini 300 MHz spectrometer. All spectra were locked to deuterium resonance of CD_3CN .

^{*}Corresponding author. E-mail: bogunial@amu.edu.pl

ISSN 1061-0278 print/ISSN 1029-0478 online © 2004 Taylor & Francis Ltd DOI: 10.1080/10610270410001687547

TABLE I Boiling points and yields of products

Podand	Short name	Yield (%)	Boiling point (°C/mmHg)
(CH ₃) ₂ Si(OCH ₂ CH ₂ OCH ₃) ₂	Me ₂ Si22	43	95/10
(CH ₃) ₂ Si[(OCH ₂ CH ₂) ₂ OCH ₃] ₂	Me ₂ Si32	40	150-165/10
(CH ₃) ₂ Si[(OCH ₂ CH ₂) ₃ OCH ₃] ₂	Me ₂ Si42	44	215/10
C ₂ H ₅ Si(OCH ₂ CH ₂ OCH ₃) ₃	EtSi23	77	113-115/10
C ₂ H ₅ Si [(OCH ₂ CH ₂) ₂ OCH ₃] ₃	EtSi33	68	210-230/10
C ₂ H ₅ Si[(OCH ₂ CH ₂) ₃ OCH ₃] ₃	EtSi43	45	270-280/10
PhSi(OCH ₂ CH ₂ OCH ₃) ₃ *	PhSi23	92	181-183/1.2
PhSi [(OCH ₂ CH ₂) ₂ OCH ₃] ₃ *	PhSi33	90	245-247/1.1
PhSi[(OCH ₂ CH ₂) ₃ OCH ₃] ₃ *	PhSi43	85	255-258/0.2

*Ref. [8].

FIGURE 1 Atomic numbering used for the molecules studied.

¹H NMR measurements were carried out at an operating frequency of 300.075 MHz; flip angle $(pw) = 45^{\circ}$; spectral width (sw) = 4500 Hz; acquisition time (at) = 2.0 s; relaxation delay (d1) = 1.0 s; T = 293 K; and TMS as internal standard No window function or zero filing was used. Digital

resolution = 0.2 Hz/point. ¹³C NMR spectra were recorded at the operating frequency 75.454 MHz; $pw = 60^{\circ}$; sw = 19000 Hz; at = 1.8 s, d1 = 1.0 s; T = 293 K; and TMS as the internal standard. Line boarding parameters were 0.5 or 1 Hz.

The following parameters were used for ⁷Li NMR: LiCl in D₂O (1 mol dm⁻³) as external standard, sfrq = 116.619 MHz, pw = 70°, sw = 6000 Hz, at = 3 s, d1 = 0.5 s; T = 293 K. Digital resolution = 0.6 Hz/point. No window function or zero filing was used.

²⁹Si NMR spectra were recorded using the following parameters: sfrq = 59.611 MHz, $pw = 60^{\circ}$, sw = 10000 Hz, at = 4 s, d1 = 1.5 s, T = 293 K; and TMS in CD₃Cl (1 mol dm⁻³) as external standard Digital resolution = 0.3 Hz/point. No window function or zero filing was used.

TABLE II ¹H Chemical shifts for silicon podands in CD₃CN at 293 K

	¹ H Chemical shift (ppm)										
Podand	H^3	H^4	H^{6}	H^{7}	H ⁹	H^{10}	CH ₃	H^{i}	H^{ii}	H ⁱⁱⁱ	H^{iv}
Me ₂ Si22	3.73 (t)	3.39 (t)	_	_	_	_	3.28 (s)	0.06 (s)	_	_	_
Me ₂ Si32	3.73 (t)	3.47 (t)	3.42 (t)	3.53 (t)	_	_	3.26 (s)	0.02 (s)	_	_	-
Me ₂ Si42	3.62 (t)	3.37 (t)		3.42-3.50 (m)	3.32 (t)	3.21 (s)	0.07 (s)		_	_	
EtSi23	3.78 (t)	3.37 (t)	_	_ ``	- `	- ``	3.25 (s)	0.55 (q)	0.87 (t)	_	-
EtSi33	3.65 (t)	3.51 (t)	3.57 (t)	3.44 (t)	_	_	3.28 (s)	0.57 (q)	0.90 (t)	_	-
EtSi43	3.68 (t)	3.37 (t)		3.40-3.50 (m)	3.32 (t)	3.28 (s)	0.55 (q)	0.77 (t)	-	_	
PhSi23	3.91 (t)	3.46 (t)	_	_ ``	- `	- ``	- 1	3.29 (s)	7.65 (d)	7.40 (t)	7.47 (t)
PhSi33	3.92 (t)	3.52-3	.55 (m)	3.45 (t)	_	_	3.28 (s)	-	7.70 (d)	7.41 (t)	7.47 (t)
PhSi43	3.92 (t)		3.52	2–3.59 (m)		3.45 (t)	3.28 (s)	-	7.68 (d)	7.40 (t)	7.42 (t)

s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet.

10

	¹³ C Chemical shifts (ppm)										
Podand	C ³	C^4	C ⁶	C ⁷	C ⁹	C ¹⁰	C ¹²	C ⁱ	C ⁱⁱ	C ⁱⁱⁱ	C^{iv}
Me ₂ Si22	61.48	73.61	58.66	_	_	_	_	-3.46	_	_	_
Me ₂ Si32	61.32	72.10	70.19	71.63	58.61	-	-	-3.50	-	-	_
Me ₂ Si42	61.24	72.10	70.06	; 69.95	70.04	71.38	58.34	-3.68	-	-	-
EtSi23	61.69	73.69	58.48	_	_	_	_	1.75	5.93	_	_
EtSi33	61.61	71.87	70.02	71.51	58.48	_	_	1.58	5.98	_	_
EtSi43	61.47	71.69	69.96	; 69.89	70.02	71.32	58.29	1.45	5.74	-	-
PhSi23	63.99	75.02	59.63	_	-	-	-	132.51	136.61	129.74	132.39
PhSi33	64.20	73.62	73.32	71.83	59.71	-	-	131.07	136.75	129.75	132.42
PhSi43	64.23	73.65	71.98	; 72.03	71.85	73.44	59.68	132.54	136.75	129.78	132.42

TABLE IV $^{29}\mbox{Si}$ Chemical shifts for silicon podands in CD_3CN at 293 K

Podand	²⁹ Si Chemical shift (ppm)
Me ₂ Si22	- 43.78
Me ₂ Si32	-45.22
Me ₂ Si42	-45.39
EtSi23	-60.28
EtSi33	-60.76
EtSi43	-61.02
PhSi23	-65.32
PhSi33	-65.99
PhSi43	-66.12

The stability constants of the complexes were estimated according to the Benesi–Hildebrand method [16].

Semiempirical Calculations

PM3 semiempirical calculations were performed by using the WINMOPAC V2.0 program [17, 18]. In all cases the precise keyword was used and full geometry optimization was carried out without any symmetry constraints [17, 18].

Calorimetric Measurements

Heats of reaction were determined following the procedure given in [19] and [20] by the titration of podand compounds with SbCl₅ dissolved in CCl₄.

RESULTS AND DISCUSSION

We obtained two groups of podands (di- and tripodands) in which the silicon atom was the central atom of the molecule. The dimethyl Si-ligands belonged to the dipodands while both Ph and Et Si-ligands were in the tripodand group. The structures, boiling points and yields for the podands are given in Table I. The numbering of atoms in the molecules is presented in Fig. 1.

¹H, ¹³C and ²⁹Si NMR data for the silicon podands are given in Tables II–IV, respectively The ¹H, ¹³C and ²⁹Si NMR spectra correspond to the structures of the arrangements studied and are very important with regard to results of Si-ligand complexes with metal cations. In ¹H and ¹³C NMR data fundamental changes in connection with the length of the podand chain are not observed, while for ²⁹Si NMR spectra these influences are considerable and are connected with an increase in induction effect.

Tables V-VII include results of the PM3 hamiltonian calculations of the Si-podands and theirs complexes with the lithium cation. Values for the heat of formation (ΔF) of 1:1 complexes with the Li⁺ ion are approximately 500 kJ mol⁻¹ greater than those for the free ligands. Differences in ΔF between complexes and ligands provide evidence that the complexation processes for all cases are similar. Ligands in complexes are well organized because of the cation. The dipole moments of the relative complexes are greater than for the free ligands. The effect of the interaction between the lithium cation and oxygen atoms of the polyoxaethylene ligand chains is to decrease the partial charge on the oxygen atoms that participate in complexation, and this was observed, while for noncomplexing oxygen atoms the partial charges increase. These facts allow us to understand the method of complexation.

¹H and ¹³C chemical shifts for 1:1 complexes of Si-podands with lithium, sodium and rubidium ions in deuterium acetonitryl solutions are presented in Tables VIII and IX. In all cases small changes

TABLE V Some theoretical parameters for double-chain silanes

			Si O O			
ΔF (kJ mol ⁻¹)	-1062.41577	-603.50808	- 1386.20097	-916.42530	- 1709.98207	- 1292.19889
Dipole moment (D)	0.37990	3.64445	0.82610	3.57566	0.37446	3.13173
HOMO energy (eV)	-9.600	-13.336	-9.637	- 12.523	-9.648	-12.960
LUMO energy (eV)	0.937	-3.347	0.899	-3.240	0.890	-2.543
0, ()			Ch	arge for O-atoms		
O^2	-0.4072	-0.4144	-0.4068	- 0.4300	-0.4072	-0.3400
	-0.4072	-0.3751	-0.4068	-0.4389	-0.4072	-0.3428
O^5	-0.2724	-0.2102	-0.2762	-0.2098	-0.2755	-0.1980
	-0.2724	-0.2167	-0.2762	-0.2095	-0.2755	-0.1722
O^8			-0.2673	-0.2037	-0.2715	-0.1892
			-0.2673	-0.2069	-0.2715	-0.1761
O^{11}					-0.2674	-0.2833
-					-0.2674	-0.2783

 ΔF , heat of formation.

011
2
Januar
29
15:17
At:
Downloaded

TABLE VI Some theoretical parameters for triple-chain silanes with an Et group

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
$\Delta F$ (k] mol ⁻¹ )	-1037.06662	- 532.70329	-1535.06662	-1029.16523	-2021.09623	-1515.17689	-2506.64796	-2054.36213
Dipole moment (D)	0.88922	4.11495	0.71962	4.07827	0.77070	3.78047	0.76796	3.41936
HÔMO energy (eV)	-9.467	-13.307	-9.548	-12.313	-9.604	-12.140	-9.616	-12.396
LUMO energy (eV)	0.950	-3.934	0.813	- 3.689	0.758	-3.536	0.744	-3.047
				Charg	e for O-atoms			
0 ²	-0.4429	-0.4315	-0.4474	- 0.4294	-0.4474	-0.4505	-0.4477	-0.4312
	-0.4052	-0.3999	-0.4474	-0.4631	-0.4107	-0.4571	-0.4110	-0.3848
	-0.4430	-0.3961	-0.4112	-0.4503	-0.4474	-0.4326	-0.4477	-0.4284
0 ⁵			-0.2723	-0.2307	-0.2732	-0.2395	-0.2756	-0.2229
			-0.2695	-0.2296	-0.2763	-0.2354	-0.2726	-0.1942
			-0.2723	-0.2372	-0.2763	-0.2336	-0.2757	-0.2073
0 ⁸					-0.2676	-0.2757	-0.2718	-0.2772
					-0.2683	-0.2750	-0.2723	-0.2858
					-0.2676	-0.2749	-0.2718	-0.2451
O ¹¹							-0.2674	-0.2659
							-0.2673	-0.2638
							-0.2674	-0.2747

 $\Delta F$ , heat of formation.

TABLE VII Some theoretical parameters for triple-chain silanes with a Ph group head

$- \frac{1870.12957}{3.23976} - \frac{11.922}{-3.356}$	- 0.3820 - 0.4199 - 0.4254 - 0.2745 - 0.2193 - 0.2295	- 0.2814 - 0.2636 - 0.2696 - 0.2631 - 0.2654 - 0.2820
- 2387.23561 1.26653 - 9.433 0.407	- 0.4208 - 0.4434 - 0.4155 - 0.2582 - 0.2617 - 0.2687	- 0.2716 - 0.2721 - 0.2714 - 0.2655 - 0.2691
- 1394.95176 3.38694 - 11.926 - 3.043	- 0.4226 - 0.3688 - 0.24155 - 0.246 - 0.2005 - 0.2005	- 0.2641 - 0.2538 - 0.2577
$- 1874.25344 \\1.36571 \\- 9.597 \\0.215$	-0.4283 -0.4283 -0.4291 -0.2205 -0.2705 -0.2705 -0.2705	- 0.2658 - 0.2671 - 0.2652
- 858.98009 3.42075 - 11.473 - 3.464	- 0.4447	
-1375.76446 -1.40884 -9.426 0.386	-0.4291 -0.4259 -0.4296 -0.2637 -0.2637 -0.2635	
- 258.77126 3.52962 - 11.683 - 4.847	0.4419 0.4420 0.4436	
-876.10687 1.57271 -9.409 0.458	- 0.4345 - 0.4345 - 0.4345	
ΔF (kJ mol ⁻¹ ) Dipole moment (D) HOMO energy (eV) LUMO energy (eV)	0 ^{,2}	011

 $\Delta F$ , heat of formation.

						¹ H Chen	nical shifts	(ppm)				
		$H^3$	$\mathrm{H}^4$	$\mathrm{H}^{6}$	$\mathrm{H}^{7}$	H ⁹	$\mathrm{H}^{10}$	CH ₃	$H^{i}$	$\mathrm{H}^{\mathrm{ii}}$	$\mathrm{H}^{\mathrm{iii}}$	$\mathrm{H}^{\mathrm{iv}}$
Me ₂ Si22	Li ⁺	3.87 (t)	3.42 (t)	-	_	_	_	3.29 (s)	0.07 (s)	_	_	_
	$Na^+$	3.85 (t)	3.41 (t)	_	-	_	_	3.28 (s)	0.07 (s)	_	_	-
	$Rb^+$	3.79 (t)	3.35 (t)	-	-	-	_	3.27 (s)	0.07 (s)	_	-	-
Me ₂ Si32	$Li^+$	3.84 (t)	3.53-3.61 (m)			-	_	3.28 (s)	0.04 (s)	_	-	-
	$Na^+$	3.83 (t)	3.55-3.61 (m)			-	_	3.28 (s)	0.04 (s)	_	-	-
	$Rb^+$	3.80 (t)	3.56-3.60 (s)			-	_	3.27 (s)	0.03 (s)	_	-	-
Me ₂ Si42	$Li^+$	3.85 (t)	3.45-3.58 (m)					3.22 (s)	0.08 (s)	_	-	-
	$Na^+$	3.83 (t)	3.52-3.60 (m)					3.23 (s)	0.08 (s)	_	_	-
	$Rb^+$	3.80 (t)	3.48-3.58 (m)					3.22 (s)	0.07 (s)	_	_	-
EtSi23	$Li^+$	3.88 (t)	3.43 (t)	_	_	_	_	3.28 (s)	0.57 (q)	0.88 (t)	-	_
	$Na^+$	3.86 (t)	3.41 (t)	_	-	_	_	3.28 (s)	0.57 (q)	0.88 (t)	_	-
	$Rb^+$	3.82 (t)	3.39 (t)	-	-	-	_	3.26 (s)	0.55 (q)	0.87 (t)	-	-
EtSi33	$Li^+$	3.75 (t)	3.56-3	8.63 (m)		-	_	3.30 (s)	0.58 (q)	0.91 (t)	-	-
	$Na^+$	3.78 (t)	3.58-3	8.60 (m)		-	_	3.30 (s)	0.58 (q)	0.90 (t)	-	-
	Rb ⁺	3.71 (t)	3.50-3	3.57 (m)		-	-	3.29 (s)	0.57 (q)	0.90 (t)	-	-
EtSi43	$Li^+$	3.79 (t)	3.41-3	3.59 (m)		3.30 (s)	0.56 (q)	0.78 (t)		_		
	$Na^+$	3.80 (t)	3.42-3	3.58 (m)		3.30 (s)	0.56 (q)	0.78 (t)	_	_		
	$Rb^+$	3.76 (t)	3.40-3	3.55 (m)		3.29 (s)	0.55 (q)	0.77 (t)	_	_		
PhSi23	Li+	3.98 (bt)	3.60 (bt)	-	-	-		3.35 (s)	_	7.70 (d)	7.40 (t)	7.48 (t)
	$Na^+$	3.95 (t)	3.52 (t)	-	-	-	_	3.34 (s)	_	7.69 (d)	7.40 (t)	7.47 (t)
	$Rb^+$	3.94 (t)	3.52 (t)	-				3.34(s)		7.67 (d)	7.40 (t)	7.47 (t)
PhSi33	$Li^+$	4.05 (bs)	3.60-3.85 (r	n)	3.55 (t)	-	_	3.32 (s)	_	7.71 (d)	7.41 (t)	7.47 (t)
	$Na^+$	4.00 (t)	3.60-3.68 (r	n)	3.48 (t)	-	-	3.30 (s)	-	7.70 (d)	7.40 (t)	7.47 (t)
	Rb ⁺	4.01 (t)	3.60-3.65 (r	n)	3.48 (t)	-	-	3.29 (s)	-	7.70 (d)	7.40 (t)	7.47 (t)
PhSi43	$Li^+$	4.05 (bt)	3.55-3.80 (r	n)	3.38 (s)	-	7.70 (d)	7.40 (t)	7.43 (t)			
	$Na^+$	4.02 (t)	3.52-3.75 (r	n)	3.33 (s)	-	7.69 (d)	7.40 (t)	7.43 (t)			
	Rb ⁺	4.03 (bt)	3.55-3.75 (r	n)	3.33 (s)	-	7.70 (d)	7.40 (t)	7.42 (t)			

TABLE VIII ¹H Chemical shifts for complexes (1:1) of Si podands with alkali metal cations

s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet.

					¹³ C	C Chemical	shifts for	Si podand	s (ppm)			
		C ³	$C^4$	C ⁶	C ⁷	C ⁹	C ¹⁰	C ¹²	C ⁱ	C ⁱⁱ	C ⁱⁱⁱⁱ	$C^{iv}$
Me ₂ Si22	$Li^+$	60.72	72.90	58.63	_	_	_	_	-3.40	_	_	_
-	$Na^+$	60.82	73.00	58.63	-	-	_	_	-3.41	-	-	_
	Rb ⁺	61.04	73.35	58.64	-	-	-	-	-3.43	_	_	-
Me ₂ Si32	Li ⁺	60.74	71.58	69.66	71.11	58.58	_	_	-3.49	-	_	-
-	$Na^+$	60.87	71.72	69.74	71.23	58.60	_	_	-3.49	-	_	-
	Rb ⁺	61.09	71.96	69.89	71.40	58.61	_	_	-3.50	-	_	-
Me ₂ Si42	Li ⁺	60.82	71.73	69.51	$(2 \times)$	69.69	71.38	58.33	-3.65	_	-	-
	$Na^+$	60.91	71.84	69.73	; 69.64	69.77	71.38	58.31	-3.67	_	_	-
	$Rb^+$	61.05	71.98	69.91	$(2 \times)$	69.86	71.38	58.33	-3.67	_	-	-
EtSi23	$Li^+$	61.08	72.60	58.42	_	-	-	-	1.70	5.93	-	-
	$Na^+$	61.11	73.02	58.48	-	-	-	-	1.72	5.94	-	-
	Rb ⁺	61.44	73.51	58.48	-	-	-	-	1.70	5.94	_	_
EtSi33	Li ⁺	61.12	71.39	69.66	71.13	58.46	-	-	1.59	5.98	_	_
	$Na^+$	61.22	71.47	69.76	71.27	58.46	_	_	1.60	5.97	-	-
	Rb ⁺	61.46	71.60	69.83	71.33	58.47	_	_	1.60	5.98	-	-
EtSi43	Li ⁺	61.10	71.34	69.64	$(2 \times)$	69.70	71.02	58.28	1.49	5.74	-	-
	$Na^+$	61.23	71.41	69.73	; 69.67	69.75	71.14	58.27	1.46	5.73	-	-
	Rb ⁺	61.31	71.50	69.84	$(2 \times)$	69.89	71.25	58.28	1.47	5.75	_	-
PhSi23	$Li^+$	63.58	74.20	59.69	_	_	_	_	132.68	136.05	129.61	132.65
	$Na^+$	64.03	74.75	59.86	_	_	_	_	132.87	136.65	129.96	132.87
	$Rb^+$	64.00	74.91	59.67	_	_	_	_	132.61	136.60	129.77	132.44
PhSi33	$Li^+$	63.85	72.56	71.65	70.18	59.99	_	_	132.08	136.04	129.71	132.68
	$Na^+$	64.09	72.47	72.94	70.86	59.93	_	_	130.74	136.52	130.02	133.06
	Rb ⁺	64.11	72.89	73.11	71.27	59.83	-	_	131.43	136.65	129.90	132.83
PhSi43	Li ⁺	63.64	72.79	70.24	$(2 \times)$	71.58	71.55	59.79	129.92	136.14	129.67	132.65
	$Na^+$	64.08	73.17	70.75	$(2 \times)$	71.03	72.47	60.02	130.92	136.67	130.10	132.87
	Rb ⁺	64.10	73.22	70.98	; 71.03	71.35	72.88	59.93	132.54	136.75	129.78	132.42

TABLE IX ¹³C Chemical shifts for complexes (1:1) of Si podands with alkali metal cations

TABLE X ²⁹Si Chemical shifts for Si-ligand/cation solutions (R = ratio of [ligand]/[cation])

	²⁹ Si	chemical shift (p)	pm)
Complex	<i>R</i> =2:1	<i>R</i> =1:1	<i>R</i> =1:2
Me ₂ Si22+Li ⁺	-42.74	-42.76	-42.77
Me ₂ Si22+Na ⁺	-42.92	-42.93	-42.90
Me ₂ Si22+Rb ⁺	-43.09	-43.12	-43.11
Me ₂ Si32+Li ⁺	-43.96	-44.01	-44.04
Me ₂ Si32+Na ⁺	-44.10	-44.17	-44.14
Me ₂ Si32+Rb ⁺	-44.66	-44.65	-44.61
Me ₂ Si42+Li ⁺	-44.14	-44.14	-44.14
Me ₂ Si42+Na ⁺	-44.31	-44.37	-44.33
Me ₂ Si42+Rb ⁺	-44.83	-44.82	-44.81
EtSi23+Li ⁺	-59.92	-59.67	-59.67
EtSi23+Na ⁺	-59.91	-59.92	-59.92
EtSi23+Rb ⁺	-60.11	-60.02	-60.04
EtSi33+Li ⁺	-59.99	-59.13	-59.18
EtSi33+Na ⁺	-60.36	-59.26	-59.26
EtSi33+Rb ⁺	-60.42	-59.30	-59.31
EtSi43+Li ⁺	-60.78	-59.99	-60.28
EtSi43+Na ⁺	-60.72	-60.06	-60.31
EtSi43+Rb ⁺	-60.81	-60.12	-60.21
PhSi23+Li ⁺	-65.22	-65.13	-65.13
PhSi23+Na ⁺	-65.28	-65.13	-65.12
PhSi23+Rb ⁺	-65.29	-65.15	-65.16
PhSi33+Li ⁺	-65.43	-65.32	-65.33
PhSi33+Na ⁺	-65.53	-65.41	-65.45
PhSi33+Rb ⁺	-65.55	-65.40	-65.42
PhSi43+Li ⁺	-65.87	-65.55	-65.75
PhSi43+Na ⁺	-65.85	-65.49	-65.58
PhSi43+Rb ⁺	-65.91	-65.58	- 65.57

in chemical shifts were observed. The values of these changes depend on the position of the atom in the ligand molecule and the ion in the complex. ²⁹Si NMR chemical shifts of Si-ligand/cation solutions (Table X) showed the formation of only 1:1 complexes for all of the podands studied.

⁷Li chemical shifts for ligand/lithium ion mixtures and ²³Na chemical shifts for ligand/sodium ion mixtures in CD₃CN (293 K) as a function of the ligand/metal molar ratio for Si-podands in CD₃CN (293 K) were measured (Table XI). From these data values of stability constants  $(\log K)$  for complexes of ligands with Li⁺ and Na⁺ ions were calculated, and the results are summarized in Table XII. The ESIMS technique was used to determine the stoichiometry of the silicon complexes with lithium and sodium cations, and for all of the podands strong signals of 1:1 complexes with metal ions were observed. The intensity of  $(M + Li^+)$  and  $(M + Na^+)$  signals obtained in the second ESIMS experiment for the solution of one ligand and excess metal cation mixture (1:1) corresponded to the relation of the stability constants as determined by NMR methods (Fig. 2).

For all of the ligands only a small increase in the values of the stability constants with length of the polyoxaethylene chains in the ligand was observed. The values of the stability constants of the 1:1 complexes for the sodium ions were always higher than for the complexes with lithium

	1 and INA Chemik	cai snirts (ppm) ror c	The to (T.T.) established	pounds with minu	Thim some mine in the				
+					⁷ Li NMR				
1.690	PhSi23+Li ⁺ - 1.558	PhSi33+Li ⁺ - 1.497	PhSi43+Li ⁺ - 1.427	EtSi23+Li ⁺ -1.496	EtSi33+Li ⁺ - 1.344	EtSi43+Li ⁺ -1.327	Me ₂ Si22+Li ⁺ - 1.551	Me ₂ Si32+Li ⁺ - 1.485	Me ₂ Si42+Li ⁺ - 1.422
la+					²³ Na NMR				
6.351	PhSi23+Na ⁺ - 6.243	PhSi33+Na ⁺ - 6.209	PhSi43+Na ⁺ - 6.204	EtSi23+Na ⁺ -6.191	EtSi33+Na ⁺ - 6.144	EtSi43+Na ⁺ -6.150	Me ₂ Si22+Na ⁺ - 6.275	Me ₂ Si32+Na ⁺ - 6.243	Me ₂ Si42+Na ⁺ - 6.237

TABLE XII Stability constants (log *K*) for the complexes of ligands with  $Li^+$  and  $Na^+$  ions

TABLE XIII Heats of interaction of podands with  $SbCl_5$  in  $CCl_4$  solution (1:1 complexes)

	Log K	
Ligand	Li ⁺	Na ⁺
Me ₂ Si22	$0.6 \pm 0.1$ (1:1)	$0.7\pm 0.1~(1:1)$
Me ₂ Si32	$0.8 \pm 0.2$ (1:1)	$1.2 \pm 0.2 (1:1)$
Me ₂ Si42	$0.9 \pm 0.2$ (1:1)	$1.2 \pm 0.1 (1:1)$
EtSi23	$0.6 \pm 0.2$ (1:1)	$1.9 \pm 0.1 (1:1)$
EtSi33	$1.1 \pm 0.1 (1:1)$	$2.0 \pm 0.2$ (1:1)
EtSi43	$1.2 \pm 0.1 (1:1)$	$2.0 \pm 0.1 (1:1)$
PhSi23	$0.4 \pm 0.1$ (1:1)	$1.3 \pm 0.1 (1:1)$
PhSi33	$0.7 \pm 0.1 (1:1)$	$1.5 \pm 0.2 (1:1)$
PhSi43	$0.9 \pm 0.2 (1:1)$	$1.5 \pm 0.3$ (1:1)

Ligand	$-\Delta H (\mathrm{kJmol}^{-1})$
Me ₂ Si22	$101 \pm 8$
Me ₂ Si32	$157 \pm 12$
Me ₂ Si42	$204 \pm 14$
EtSi23	$210 \pm 13$
EtSi33	$315 \pm 22$
EtSi43	$424 \pm 23$
PhSi23	$181 \pm 6^{*}$
PhSi33	$268 \pm 15^{*}$
PhSi43	$356 \pm 16^{*}$

*Ref. [8].



FIGURE 2 Intensity of  $(M + Li^+)$ ,  $(M + Na^+)$  and  $(M + K^+)$  signals obtained in ESIMS experiment for the solution of EtSi23 (a) and EtSi43 ligands (b) with excess metal cation  $(Li^+ : Na^+ : K^+)$  mixture (1:1:1).

ions. The silicon ligands formed 1:1 complexes with SbCl₅ in different solvents. Heats of reaction were determined using calorimetric titration of the podand compounds with SbCl₅, both dissolved in CCl₄. These values depended strongly on the length of the polyoxaethylene chains in the ligand molecules and increased with the number of oxygen atoms in the podand (Table XIII).

The results show that the addition of cations to podand solvents or SbCl₅ molecules give 1:1 complexes. As a result of the self-organization process, ion or molecular channels were formed. These podands could be used as strong

complexation solvents for organic reactions when the reagents are salts or molecules with electron acceptor atoms.

#### Acknowledgements

We thank the Polish Committee for Scientific Research for financial support, grant KBN 7 TO9A 096/20.

#### References

 Schroeder, G.; Gierczyk, B.; Łęska, B. J. Inclusion Phenom. 1999, 35, 327.

- [2] Gierczyk, B.; Schroeder, G.; Wojciechowski, G.; Rózalski, B.; Brzezinski, B.; Zundel, G. Phys. Chem. Chem. Phys. 1999, 1, 4897.
- [3] Brzezinski, B.; Schroeder, G. J. Mol. Struct. 1998, 441, 83.
- [4] Brzezinski, B.; Gierczyk, B.; Rózalski, B.; Wojciechowski, G.; Schroeder, G.; Zundel, G. J. Mol. Struct. 2000, 519, 119.
- [5] Brzezinski, B.; Rózalski, B.; Schroeder, G.; Bartl, F.; Zundel, G. J. Chem. Soc., Faraday Trans. 1998, 94, 2093.
- [6] Gierczyk, B.; Schroeder, G.; Nowak–Wydra, B.; Wojciechowski, G.; Brzezinski, B. J. Mol. Struct. 1999, 513, 149.
- [7] Gierczyk, B.; Schroeder, B.; Wojciechowski, G.; Łeska, B.; Rybachenko, V. I.; Brzezinski, B. J. Mol. Struct. 2000, 516, 153.
- [8] Schroeder, G.; Gierczyk, B.; Rybachenko, V. I.; Brzezinski, B. J. Mol. Struct. 2000, 526, 159.
- [9] Schroeder, G.; Gierczyk, B.; Łęska, B.; Wojciechowski, G.; Pankiewicz, R.; Brzezinski, B.; Bartl, F. J. Mol. Struct. 2002, 607, 9.
- [10] Łęska, B.; Kałuzna, I.; Gierczyk, B.; Schroeder, G.; Przybylski, P.; Brzezinski, B. J. Mol. Struct. 2002, 643, 9.

- [11] Schroeder, G.; Łęska, B.; Gierczyk, B.; Eitner, K. Ch. IV, Facultatis Chemiae Universitatis Studiorum Mickiewiczianae Posnaniensis, Annales I; Poznań, 2002;, p. 103.
- [12] Gierczyk, B.; Łęska, B.; Brzezinski, B.; Schroeder, G. Supramol. Chem. 2002, 14, 497.
- [13] Maia, A.; Landini, D.; Łeska, B.; Schroeder, G. Tetrahedron Lett. 2003, 44, 4149.
- [14] Bełtowska–Brzezinska, M.; Łuczak, T.; Gierczyk, B.; Eitner, K.; Brzezinski, B.; Pankiewicz, R.; Schroeder, G. J. Mol. Struct. 2002, 607, 77.
- [15] Kira, J.; Łęska, B.; Schroeder, G. Anal. Pol. Chem. Soc. 2001, 159.
- [16] Polster, J.; Lachmann, H. Spectrometric Titrations: Analysis of Chemical Equilibria; VCH: Weinheim, Germany, 1989.
- [17] Winmopac V2.0. User Manual; Fujitsu, 1997.
- [18] Steward, J. J. P. J. Comput. Chem. 1989, 10, 221.
- [19] Rybachenko, V. I.; Schroeder, G.; Titow, E. B. Zh. Obshch. Khim. 1996, 66, 1007.
- [20] Rybachenko, V. I.; Titow, E. B. Zh. Fiz. Khim. 1997, 77, 248.